Integrations & Extensibility¶
Section: 7-integrations-extensibility
Document: Third-Party Integrations & Platform Extensibility
Audience: Developers, Integration Partners, Technical Decision Makers
Last Updated: 2025-12-30
Version: 1.0
🎯 Executive Summary¶
MachineAvatars integrates with best-in-class third-party services to deliver AI-powered chatbot experiences. This section documents all external integrations, API dependencies, and extensibility points.
Integration Categories:
- 🤖 AI/ML Providers - OpenAI, Anthropic, Google (9 LLM models)
- ☁️ Cloud Infrastructure - Microsoft Azure (Cosmos DB, Blob Storage, Container Apps)
- 💳 Payment Processing - Razorpay (India's leading payment gateway)
- 📊 Analytics & Monitoring - PostHog, DataDog, Loki/Grafana
- 🔍 Vector Database - Milvus (open-source, self-hosted)
🤖 AI/ML Provider Integrations¶
OpenAI / Azure OpenAI Service¶
Status: ✅ Primary LLM Provider
Models Used:
- GPT-4-0613 - Complex reasoning, high-quality responses
- GPT-3.5 Turbo 16K - Cost-effective, fast responses
- GPT-4o Mini - Balanced cost/performance
- text-embedding-ada-002 - Vector embeddings (1536 dimensions)
Integration Type: REST API
Endpoints:
# Azure OpenAI Service
BASE_URL = "https://{deployment}.openai.azure.com/openai/deployments/{model}/chat/completions"
API_VERSION = "2023-05-15"
# Headers
headers = {
"api-key": "{AZURE_OPENAI_KEY}", # From Azure Key Vault
"Content-Type": "application/json"
}
# Request payload
payload = {
"messages": [
{"role": "system", "content": "You are a helpful assistant..."},
{"role": "user", "content": "User query here"}
],
"temperature": 0.7,
"max_tokens": 500
}
Configuration:
- Authentication: API key-based (rotating every 90 days)
- Rate Limiting: 60 requests/minute per deployment
- Timeout: 30 seconds
- Retry Logic: Exponential backoff (3 retries)
Data Residency:
- Azure OpenAI East US - Default for US/global customers
- Azure OpenAI West Europe - For EU customers (GDPR)
- Azure OpenAI Central India - For Indian customers (planned Q2 2025, DPDPA)
Cost Optimization:
- Dynamic model routing (GPT-4 for complex, GPT-3.5 for simple queries)
- Token usage monitoring per user/plan
- Caching for repeated queries (planned)
Reference: AI/ML Architecture - Model Selection
Anthropic (Claude)¶
Status: ✅ Fallback/Alternative LLM Provider
Models Used:
- Claude 3.5 Sonnet - Complex analysis, creative tasks
Integration Type: REST API
Endpoints:
BASE_URL = "https://api.anthropic.com/v1/messages"
API_KEY = "{ANTHROPIC_API_KEY}" # From environment variables
headers = {
"x-api-key": API_KEY,
"anthropic-version": "2023-06-01",
"content-type": "application/json"
}
payload = {
"model": "claude-3-5-sonnet-20241022",
"max_tokens": 1024,
"messages": [
{"role": "user", "content": "User query"}
]
}
Use Cases:
- Primary LLM failover (if OpenAI unavailable)
- Specialized tasks (long-form content, analysis)
- Cost optimization (cheaper than GPT-4 for certain workloads)
Reference: AI/ML Architecture
Google (Gemini, Vertex AI TTS)¶
Status: ✅ Supplementary AI Provider
Services Used:
- Gemini 2.0 Flash - Multimodal LLM (text, future: images)
- Vertex AI Text-to-Speech - Voice synthesis
Integration Type: Google Cloud Platform SDK
Configuration:
from google.cloud import aiplatform
from google.cloud import texttospeech
# Initialize Vertex AI
aiplatform.init(project="your-gcp-project", location="us-central1")
# TTS example
client = texttospeech.TextToSpeechClient()
synthesis_input = texttospeech.SynthesisInput(text="Hello world")
voice = texttospeech.VoiceSelectionParams(
language_code="en-US",
name="en-US-Neural2-C"
)
audio_config = texttospeech.AudioConfig(
audio_encoding=texttospeech.AudioEncoding.MP3
)
response = client.synthesize_speech(
input=synthesis_input, voice=voice, audio_config=audio_config
)
Use Cases:
- Gemini: Budget tier LLM (Free/Basic plans)
- Vertex AI TTS: Alternative to Azure TTS, multilingual support
Authentication: Service account JSON key (stored in Azure Key Vault, planned)
☁️ Cloud Infrastructure Integrations¶
Microsoft Azure¶
Status: ✅ Primary Cloud Provider
Services Used:
| Service | Purpose | Integration Type |
|---|---|---|
| Azure Cosmos DB (MongoDB API) | Primary database (9 collections) | PyMongo driver |
| Azure Blob Storage | File storage (documents, audio, avatars) | Azure SDK |
| Azure Container Apps | Microservices hosting (23 services) | Docker + Azure CLI |
| Azure OpenAI Service | LLM inference | REST API |
| Azure Key Vault (planned) | Secrets management | Azure SDK |
| Azure Neural TTS | Voice synthesis | Azure SDK |
Cosmos DB Integration:
from pymongo import MongoClient
MONGO_URI = "mongodb://{account}.mongo.cosmos.azure.com:10255/?ssl=true&retrywrites=false"
client = MongoClient(MONGO_URI)
db = client['Machine_agent_prod']
# Collections
users = db['users_multichatbot_v2']
chatbots = db['chatbot_selections']
history = db['chatbot_history']
Blob Storage Integration:
from azure.storage.blob import BlobServiceClient
STORAGE_URL = "https://qablobmachineagents.blob.core.windows.net"
blob_service_client = BlobServiceClient(account_url=STORAGE_URL, credential="{key}")
# Upload file
blob_client = blob_service_client.get_blob_client(container="pdf-documents-prod", blob="file.pdf")
blob_client.upload_blob(data)
Reference: Infrastructure Documentation
💳 Payment Integration¶
Razorpay¶
Status: ✅ Primary Payment Gateway (India)
Integration: Razorpay Payment Gateway API
Supported Payment Methods:
- Credit/Debit cards (Visa, Mastercard, RuPay, Amex)
- UPI (Google Pay, PhonePe, Paytm)
- Net banking (60+ banks)
- Wallets (Paytm, PhonePe, Amazon Pay)
Integration Flow:
// Frontend: Initialize Razorpay checkout
const options = {
key: "rzp_live_XXXX", // Razorpay API key
amount: 49900, // Amount in paise (₹499.00)
currency: "INR",
name: "MachineAvatars",
description: "Pro Plan Subscription",
order_id: "order_XXXX", // From backend
callback_url: "/api/payment/verify",
prefill: {
email: user.email,
contact: user.phone,
},
};
const rzp = new Razorpay(options);
rzp.open();
# Backend: Create order
import razorpay
client = razorpay.Client(auth=("rzp_live_XXXX", "secret_key"))
order = client.order.create({
"amount": 49900, # paise
"currency": "INR",
"receipt": f"receipt_{user_id}",
"payment_capture": 1
})
# Verify payment signature
params_dict = {
'razorpay_order_id': order_id,
'razorpay_payment_id': payment_id,
'razorpay_signature': signature
}
client.utility.verify_payment_signature(params_dict)
Webhooks:
payment.captured- Payment successfulpayment.failed- Payment failedsubscription.charged- Recurring paymentsubscription.cancelled- Subscription cancelled
Security:
- ✅ PCI DSS Level 1 compliant (Razorpay handles card data)
- ✅ Signature verification for all webhooks
- ✅ HTTPS-only communication
Reference: IP Licensing - Razorpay
📊 Analytics & Monitoring Integrations¶
PostHog (Product Analytics)¶
Status: ✅ Active
Integration Type: JavaScript SDK (frontend) + Python SDK (backend)
Events Tracked:
// Frontend events
posthog.capture("chatbot_created", {
avatar_type: "3d",
model: "gpt-4",
subscription_tier: "pro",
});
posthog.capture("message_sent", {
chatbot_id: "xxx",
response_time_ms: 1847,
});
Use Cases:
- User behavior analysis (funnel conversions)
- Feature usage tracking
- A/B testing (planned)
DataDog (APM & Monitoring)¶
Status: ✅ Active (planned)
Integration Type: DataDog Agent + Python tracing library
Configuration:
from ddtrace import tracer
@tracer.wrap(service="response-3d-service")
def generate_response(query):
# Automatically traced
pass
Metrics Collected:
- Request latency (p50, p95, p99)
- Error rates by service
- Database query performance
- External API latency (OpenAI, Claude)
Loki + Grafana (Logging & Dashboards)¶
Status: ✅ Active
Components:
- Promtail: Log collector (runs on each container)
- Loki: Log aggregation & storage
- Grafana: Visualization & dashboards
Log Query Example:
Reference: Monitoring & Observability
🔍 Vector Database Integration¶
Milvus (Open Source)¶
Status: ✅ Self-Hosted on Azure Container Instance
Integration Type: Python SDK (pymilvus)
Configuration:
from pymilvus import connections, Collection
# Connect to Milvus
connections.connect(
alias="default",
host="milvus-prod.eastus.azurecontainerapps.io",
port="19530"
)
# Query collection
collection = Collection("embeddings")
search_params = {"metric_type": "L2", "params": {"nprobe": 10}}
results = collection.search(
data=[query_embedding],
anns_field="embedding",
param=search_params,
limit=5,
partition_names=[f"User_{user_id}_Project_{project_id}"]
)
Why Self-Hosted:
- ✅ Full control over data (no vendor lock-in)
- ✅ Cost savings vs. managed vector DB
- ✅ Apache 2.0 license (commercial-friendly)
Reference: Vector Store Architecture
🔌 Extensibility & Future Integrations¶
Planned Integrations (2025 Roadmap)¶
Q1 2025:
- Slack integration (chatbot deployment in Slack workspaces)
- Microsoft Teams integration
- Webhook support (outbound notifications)
Q2 2025:
- Zapier integration (connect to 5,000+ apps)
- WhatsApp Business API (conversational commerce)
- Telegram Bot API
Q3 2025:
- Custom LLM support (bring your own model)
- GraphQL API (in addition to REST)
🔐 Security Best Practices¶
API Keys Management:
- ✅ Never hardcode keys in source code
- ✅ Use environment variables (transitioning to Azure Key Vault)
- ✅ Rotate keys regularly (90-180 days)
- ✅ Least privilege principle (separate keys per environment)
Network Security:
- ✅ HTTPS-only for all external APIs
- ✅ IP whitelisting where possible (Azure NSG)
- ✅ Rate limiting to prevent API abuse
- ✅ Request signing for webhooks
📞 Integration Support¶
Technical Questions: integrations@askgalore.com
Partnership Inquiries: partnerships@askgalore.com
API Documentation: Section 6 - API Documentation
🔗 Related Documentation¶
- AI/ML Architecture - LLM provider details
- Infrastructure - Azure services configuration
- IP Licensing - Third-party license audit
- Security Architecture - API security, secrets management
"Great integrations enable great products." 🔌✨
Section 7 Complete: All Major Integrations Documented 🎯