Skip to content

Integrations & Extensibility

Section: 7-integrations-extensibility
Document: Third-Party Integrations & Platform Extensibility
Audience: Developers, Integration Partners, Technical Decision Makers
Last Updated: 2025-12-30
Version: 1.0


🎯 Executive Summary

MachineAvatars integrates with best-in-class third-party services to deliver AI-powered chatbot experiences. This section documents all external integrations, API dependencies, and extensibility points.

Integration Categories:

  • 🤖 AI/ML Providers - OpenAI, Anthropic, Google (9 LLM models)
  • ☁️ Cloud Infrastructure - Microsoft Azure (Cosmos DB, Blob Storage, Container Apps)
  • 💳 Payment Processing - Razorpay (India's leading payment gateway)
  • 📊 Analytics & Monitoring - PostHog, DataDog, Loki/Grafana
  • 🔍 Vector Database - Milvus (open-source, self-hosted)

🤖 AI/ML Provider Integrations

OpenAI / Azure OpenAI Service

Status: ✅ Primary LLM Provider

Models Used:

  • GPT-4-0613 - Complex reasoning, high-quality responses
  • GPT-3.5 Turbo 16K - Cost-effective, fast responses
  • GPT-4o Mini - Balanced cost/performance
  • text-embedding-ada-002 - Vector embeddings (1536 dimensions)

Integration Type: REST API

Endpoints:

# Azure OpenAI Service
BASE_URL = "https://{deployment}.openai.azure.com/openai/deployments/{model}/chat/completions"
API_VERSION = "2023-05-15"

# Headers
headers = {
    "api-key": "{AZURE_OPENAI_KEY}",  # From Azure Key Vault
    "Content-Type": "application/json"
}

# Request payload
payload = {
    "messages": [
        {"role": "system", "content": "You are a helpful assistant..."},
        {"role": "user", "content": "User query here"}
    ],
    "temperature": 0.7,
    "max_tokens": 500
}

Configuration:

  • Authentication: API key-based (rotating every 90 days)
  • Rate Limiting: 60 requests/minute per deployment
  • Timeout: 30 seconds
  • Retry Logic: Exponential backoff (3 retries)

Data Residency:

  • Azure OpenAI East US - Default for US/global customers
  • Azure OpenAI West Europe - For EU customers (GDPR)
  • Azure OpenAI Central India - For Indian customers (planned Q2 2025, DPDPA)

Cost Optimization:

  • Dynamic model routing (GPT-4 for complex, GPT-3.5 for simple queries)
  • Token usage monitoring per user/plan
  • Caching for repeated queries (planned)

Reference: AI/ML Architecture - Model Selection


Anthropic (Claude)

Status: ✅ Fallback/Alternative LLM Provider

Models Used:

  • Claude 3.5 Sonnet - Complex analysis, creative tasks

Integration Type: REST API

Endpoints:

BASE_URL = "https://api.anthropic.com/v1/messages"
API_KEY = "{ANTHROPIC_API_KEY}"  # From environment variables

headers = {
    "x-api-key": API_KEY,
    "anthropic-version": "2023-06-01",
    "content-type": "application/json"
}

payload = {
    "model": "claude-3-5-sonnet-20241022",
    "max_tokens": 1024,
    "messages": [
        {"role": "user", "content": "User query"}
    ]
}

Use Cases:

  • Primary LLM failover (if OpenAI unavailable)
  • Specialized tasks (long-form content, analysis)
  • Cost optimization (cheaper than GPT-4 for certain workloads)

Reference: AI/ML Architecture


Google (Gemini, Vertex AI TTS)

Status: ✅ Supplementary AI Provider

Services Used:

  1. Gemini 2.0 Flash - Multimodal LLM (text, future: images)
  2. Vertex AI Text-to-Speech - Voice synthesis

Integration Type: Google Cloud Platform SDK

Configuration:

from google.cloud import aiplatform
from google.cloud import texttospeech

# Initialize Vertex AI
aiplatform.init(project="your-gcp-project", location="us-central1")

# TTS example
client = texttospeech.TextToSpeechClient()
synthesis_input = texttospeech.SynthesisInput(text="Hello world")
voice = texttospeech.VoiceSelectionParams(
    language_code="en-US",
    name="en-US-Neural2-C"
)
audio_config = texttospeech.AudioConfig(
    audio_encoding=texttospeech.AudioEncoding.MP3
)
response = client.synthesize_speech(
    input=synthesis_input, voice=voice, audio_config=audio_config
)

Use Cases:

  • Gemini: Budget tier LLM (Free/Basic plans)
  • Vertex AI TTS: Alternative to Azure TTS, multilingual support

Authentication: Service account JSON key (stored in Azure Key Vault, planned)


☁️ Cloud Infrastructure Integrations

Microsoft Azure

Status: ✅ Primary Cloud Provider

Services Used:

Service Purpose Integration Type
Azure Cosmos DB (MongoDB API) Primary database (9 collections) PyMongo driver
Azure Blob Storage File storage (documents, audio, avatars) Azure SDK
Azure Container Apps Microservices hosting (23 services) Docker + Azure CLI
Azure OpenAI Service LLM inference REST API
Azure Key Vault (planned) Secrets management Azure SDK
Azure Neural TTS Voice synthesis Azure SDK

Cosmos DB Integration:

from pymongo import MongoClient

MONGO_URI = "mongodb://{account}.mongo.cosmos.azure.com:10255/?ssl=true&retrywrites=false"
client = MongoClient(MONGO_URI)
db = client['Machine_agent_prod']

# Collections
users = db['users_multichatbot_v2']
chatbots = db['chatbot_selections']
history = db['chatbot_history']

Blob Storage Integration:

from azure.storage.blob import BlobServiceClient

STORAGE_URL = "https://qablobmachineagents.blob.core.windows.net"
blob_service_client = BlobServiceClient(account_url=STORAGE_URL, credential="{key}")

# Upload file
blob_client = blob_service_client.get_blob_client(container="pdf-documents-prod", blob="file.pdf")
blob_client.upload_blob(data)

Reference: Infrastructure Documentation


💳 Payment Integration

Razorpay

Status: ✅ Primary Payment Gateway (India)

Integration: Razorpay Payment Gateway API

Supported Payment Methods:

  • Credit/Debit cards (Visa, Mastercard, RuPay, Amex)
  • UPI (Google Pay, PhonePe, Paytm)
  • Net banking (60+ banks)
  • Wallets (Paytm, PhonePe, Amazon Pay)

Integration Flow:

// Frontend: Initialize Razorpay checkout
const options = {
  key: "rzp_live_XXXX", // Razorpay API key
  amount: 49900, // Amount in paise (₹499.00)
  currency: "INR",
  name: "MachineAvatars",
  description: "Pro Plan Subscription",
  order_id: "order_XXXX", // From backend
  callback_url: "/api/payment/verify",
  prefill: {
    email: user.email,
    contact: user.phone,
  },
};
const rzp = new Razorpay(options);
rzp.open();
# Backend: Create order
import razorpay

client = razorpay.Client(auth=("rzp_live_XXXX", "secret_key"))
order = client.order.create({
    "amount": 49900,  # paise
    "currency": "INR",
    "receipt": f"receipt_{user_id}",
    "payment_capture": 1
})

# Verify payment signature
params_dict = {
    'razorpay_order_id': order_id,
    'razorpay_payment_id': payment_id,
    'razorpay_signature': signature
}
client.utility.verify_payment_signature(params_dict)

Webhooks:

  • payment.captured - Payment successful
  • payment.failed - Payment failed
  • subscription.charged - Recurring payment
  • subscription.cancelled - Subscription cancelled

Security:

  • ✅ PCI DSS Level 1 compliant (Razorpay handles card data)
  • ✅ Signature verification for all webhooks
  • ✅ HTTPS-only communication

Reference: IP Licensing - Razorpay


📊 Analytics & Monitoring Integrations

PostHog (Product Analytics)

Status: ✅ Active

Integration Type: JavaScript SDK (frontend) + Python SDK (backend)

Events Tracked:

// Frontend events
posthog.capture("chatbot_created", {
  avatar_type: "3d",
  model: "gpt-4",
  subscription_tier: "pro",
});

posthog.capture("message_sent", {
  chatbot_id: "xxx",
  response_time_ms: 1847,
});

Use Cases:

  • User behavior analysis (funnel conversions)
  • Feature usage tracking
  • A/B testing (planned)

DataDog (APM & Monitoring)

Status: ✅ Active (planned)

Integration Type: DataDog Agent + Python tracing library

Configuration:

from ddtrace import tracer

@tracer.wrap(service="response-3d-service")
def generate_response(query):
    # Automatically traced
    pass

Metrics Collected:

  • Request latency (p50, p95, p99)
  • Error rates by service
  • Database query performance
  • External API latency (OpenAI, Claude)

Loki + Grafana (Logging & Dashboards)

Status: ✅ Active

Components:

  • Promtail: Log collector (runs on each container)
  • Loki: Log aggregation & storage
  • Grafana: Visualization & dashboards

Log Query Example:

{service="response-3d"} |= "error" | json | status_code >= 500

Reference: Monitoring & Observability


🔍 Vector Database Integration

Milvus (Open Source)

Status: ✅ Self-Hosted on Azure Container Instance

Integration Type: Python SDK (pymilvus)

Configuration:

from pymilvus import connections, Collection

# Connect to Milvus
connections.connect(
    alias="default",
    host="milvus-prod.eastus.azurecontainerapps.io",
    port="19530"
)

# Query collection
collection = Collection("embeddings")
search_params = {"metric_type": "L2", "params": {"nprobe": 10}}
results = collection.search(
    data=[query_embedding],
    anns_field="embedding",
    param=search_params,
    limit=5,
    partition_names=[f"User_{user_id}_Project_{project_id}"]
)

Why Self-Hosted:

  • ✅ Full control over data (no vendor lock-in)
  • ✅ Cost savings vs. managed vector DB
  • ✅ Apache 2.0 license (commercial-friendly)

Reference: Vector Store Architecture


🔌 Extensibility & Future Integrations

Planned Integrations (2025 Roadmap)

Q1 2025:

  • Slack integration (chatbot deployment in Slack workspaces)
  • Microsoft Teams integration
  • Webhook support (outbound notifications)

Q2 2025:

  • Zapier integration (connect to 5,000+ apps)
  • WhatsApp Business API (conversational commerce)
  • Telegram Bot API

Q3 2025:

  • Custom LLM support (bring your own model)
  • GraphQL API (in addition to REST)

🔐 Security Best Practices

API Keys Management:

  • ✅ Never hardcode keys in source code
  • ✅ Use environment variables (transitioning to Azure Key Vault)
  • ✅ Rotate keys regularly (90-180 days)
  • ✅ Least privilege principle (separate keys per environment)

Network Security:

  • ✅ HTTPS-only for all external APIs
  • ✅ IP whitelisting where possible (Azure NSG)
  • ✅ Rate limiting to prevent API abuse
  • ✅ Request signing for webhooks

📞 Integration Support

Technical Questions: integrations@askgalore.com
Partnership Inquiries: partnerships@askgalore.com
API Documentation: Section 6 - API Documentation



"Great integrations enable great products." 🔌✨

Section 7 Complete: All Major Integrations Documented 🎯